B3
Calculations ... 92
Calculations; Solving Problems .. 93-95
Shape and Space .. 96-100

C3
Measures ... 101-103
Shapes and Space .. 104-106
Measures ... 107-109
Handling Data ... 110-111

D3
Calculations ... 112-118

E3
Calculations ... 119-122
Fractions ... 123-127
3-digit numbers

Write the number:

1. I more than three hundred and fifty-two.

2. I less than four hundred and sixty-seven.

3. 10 more than five hundred and sixty-two.

4. 10 less than seven hundred and fifty-three.

5. 100 more than four hundred and two.

6. 100 less than five hundred and thirty.

7. I less than seven hundred and ten.

8. I more than eight hundred and twenty-nine.

9. 10 more than three hundred and ninety.

10. 10 less than four hundred and six.
4-digit numbers

A game for two players, each with a different coloured pencil. Use 0-9 number cards. Shuffle them and place them in a pile face down. Take turns to reveal a card, and, if possible, write the number in a matching box. Place the card at the bottom of the pile. When all the boxes are filled, the winner is the one who has written more digits.

1.

Five thousand, three hundred and twenty-seven

2.

Six thousand, eight hundred and forty-nine

3.

Seven thousand, five hundred and three

4.

One thousand and twenty-eight

5.

Four thousand, six hundred and ten
5-digit numbers

A game for two players, each with a different coloured pencil. Use 0–9 number cards. Shuffle them and place them in a pile face down. Take turns to reveal a card, and, if possible, write the number in a matching box. Place the card at the bottom of the pile. When all the boxes are filled, the winner is the one who has written more digits.

1.

Twenty-three thousand, five hundred and forty-two

2.

Thirty-seven thousand, four hundred and sixty

3.

Seventy thousand, three hundred and ninety-one

4.

Forty-five thousand, two hundred and eight

5.

Eighteen thousand and sixty-four
I, 10, 100, 1000 more or less

Write the number:

1. 10 more than 4637.
2. 10 less than 6325.
3. 100 more than 3978.
4. 100 less than 5932.
5. 1 more than 7406.
6. 1 less than 8390.
7. 1000 more than 2154.
8. 1000 less than 1267.
9. 11 more than 5432.
10. 101 more than 6329.
Largest, smallest and nearest number

Use the digits to make the:

1. largest number.

2. smallest even number.

3. largest odd number.

4. smallest odd number.

5. number nearest to 5000.

6. number nearest to 7000.

7. largest number between 2000 and 3000.

8. number nearest to 4000.

9. number nearest to 6000.
Multiplying

Write a multiplication for each set of squares.

1.
 \[\begin{array}{|c|c|c|c|c|}
 \hline
 & & & & \\
 \hline
 & & & & \\
 \hline
 & & & & \\
 \hline
 \end{array} \]

\[3 \times 5 = 15\]

2.
 \[\begin{array}{|c|c|c|c|c|}
 \hline
 & & & & \\
 \hline
 & & & & \\
 \hline
 & & & & \\
 \hline
 \end{array} \]

3.
 \[\begin{array}{|c|c|c|c|c|}
 \hline
 & & & & \\
 \hline
 & & & & \\
 \hline
 & & & & \\
 \hline
 \end{array} \]

4.
 \[\begin{array}{|c|c|c|c|c|}
 \hline
 & & & & \\
 \hline
 & & & & \\
 \hline
 & & & & \\
 \hline
 \end{array} \]

5.
 \[\begin{array}{|c|c|c|c|c|}
 \hline
 & & & & \\
 \hline
 & & & & \\
 \hline
 & & & & \\
 \hline
 \end{array} \]

6.
 \[\begin{array}{|c|c|c|c|c|}
 \hline
 & & & & \\
 \hline
 & & & & \\
 \hline
 & & & & \\
 \hline
 \end{array} \]

7.
 \[\begin{array}{|c|c|c|c|c|}
 \hline
 & & & & \\
 \hline
 & & & & \\
 \hline
 & & & & \\
 \hline
 \end{array} \]

8.
 \[\begin{array}{|c|c|c|c|c|}
 \hline
 & & & & \\
 \hline
 & & & & \\
 \hline
 & & & & \\
 \hline
 \end{array} \]

9.
 \[\begin{array}{|c|c|c|c|c|}
 \hline
 & & & & \\
 \hline
 & & & & \\
 \hline
 & & & & \\
 \hline
 \end{array} \]

10.
 \[\begin{array}{|c|c|c|c|c|}
 \hline
 & & & & \\
 \hline
 & & & & \\
 \hline
 & & & & \\
 \hline
 \end{array} \]
Multiplying

Complete the multiplications.

1. $5 \times 3 = \underline{}$
2. $8 \times 2 = \underline{}$
3. $7 \times 10 = \underline{}$
4. $6 \times 7 = \underline{}$
5. $3 \times 4 = \underline{}$
6. $7 \times 3 = \underline{}$
7. $9 \times 6 = \underline{}$
8. $8 \times 5 = \underline{}$
9. $5 \times 6 = \underline{}$
10. $9 \times 10 = \underline{}$
11. $6 \times 3 = \underline{}$
12. $7 \times 2 = \underline{}$
13. $7 \times 4 = \underline{}$
14. $9 \times 5 = \underline{}$
15. $8 \times 10 = \underline{}$
16. $6 \times 6 = \underline{}$
17. $5 \times 4 = \underline{}$
18. $8 \times 3 = \underline{}$
19. $7 \times 5 = \underline{}$
20. $8 \times 8 = \underline{}$
Dividing

Write a division to match each set of cubes.

1. \[12 \div 4 = 3 \]

2.

3.

4.

5.

6.

7.

8.

Dividing with remainders

1. \(11 \div 2 = 5 r1 \)
2. \(14 \div 3 = \)
3. \(17 \div 4 = \)
4. \(18 \div 5 = \)
5. \(32 \div 10 = \)
6. \(17 \div 2 = \)
7. \(22 \div 3 = \)
8. \(42 \div 5 = \)
9. \(27 \div 4 = \)
10. \(23 \div 2 = \)
11. \(53 \div 10 = \)
12. \(20 \div 6 = \)
13. \(37 \div 4 = \)
14. \(30 \div 7 = \)
15. \(50 \div 8 = \)
16. \(60 \div 9 = \)
Pairs to 100

Each line is split in two to show a pair that totals 100.

Write each pair.

1. $64 + 36$
2.
3.
4.
5.
6.
7.
8.

Harcourt Education Ltd 2007
Pairs to 100

Each pair of cards has a total of 100. Write the missing numbers.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>22</td>
<td>96</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td></td>
<td>63</td>
</tr>
<tr>
<td>47</td>
<td>38</td>
<td></td>
</tr>
</tbody>
</table>
Adding to the next pound

Write the missing amounts.

1. \(\mathbf{5.63} + \underline{\quad} = \mathbf{6} \)
2. \(\mathbf{7.42} + \underline{\quad} = \mathbf{8} \)

3. \(\mathbf{6.28} + \underline{\quad} = \mathbf{7} \)
4. \(\mathbf{2.75} + \underline{\quad} = \mathbf{3} \)

5. \(\mathbf{7.15} + \underline{\quad} = \mathbf{8} \)
6. \(\mathbf{4.08} + \underline{\quad} = \mathbf{5} \)

7. \(\mathbf{9.34} + \underline{\quad} = \mathbf{10} \)
8. \(\mathbf{5.71} + \underline{\quad} = \mathbf{6} \)

9. \(\mathbf{8.76} + \underline{\quad} = \mathbf{9} \)
10. \(\mathbf{6.03} + \underline{\quad} = \mathbf{7} \)

11. \(\mathbf{15.42} + \underline{\quad} = \mathbf{16} \)
12. \(\mathbf{27.89} + \underline{\quad} = \mathbf{28} \)
The next ten, hundred, thousand

Complete the table by writing what must be added to make:

<table>
<thead>
<tr>
<th>the next ten</th>
<th>the next hundred</th>
<th>the next thousand</th>
</tr>
</thead>
<tbody>
<tr>
<td>2574</td>
<td>6</td>
<td>26</td>
</tr>
<tr>
<td>5638</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7245</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8137</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5946</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3208</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4079</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8613</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Polygons

Write the name of each polygon.

Choose from: triangle, quadrilateral, pentagon, hexagon and octagon.

1. [Diagram of a triangle]
2. [Diagram of a quadrilateral]
3. [Diagram of an irregular polygon]
4. [Diagram of a quadrilateral]
5. [Diagram of a pentagon]
6. [Diagram of a hexagon]
7. [Diagram of an irregular polygon]
8. [Diagram of an octagon]
9. [Diagram of a pentagon]
Mark the two equal sides of each isosceles triangle.
Isosceles triangles

Each line is one of the two equal sides of an isosceles triangle.

Draw the other side, then complete the triangle.

1.

5.

8.

- Each line is one of the two equal sides of an isosceles triangle.

- Draw the other side, then complete the triangle.
Measuring lengths

Measure the length of each object to the nearest half centimetre.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>C</td>
<td>D</td>
</tr>
<tr>
<td>E</td>
<td>F</td>
</tr>
<tr>
<td>G</td>
<td>H</td>
</tr>
<tr>
<td>I</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cm</th>
<th>cm</th>
<th>cm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cm</th>
<th>cm</th>
<th>cm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cm</th>
<th>cm</th>
<th>cm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Millimetres, centimetres, metres and kilometres

Write the missing lengths.

1. \(1 \text{ m} = \underline{\text{\hspace{1cm}}} \text{ cm}\)
2. \(\frac{1}{2} \text{ m} = \underline{\text{\hspace{1cm}}} \text{ cm}\)

3. \(1 \text{ m } 35 \text{ cm} = \underline{\text{\hspace{1cm}}} \text{ cm}\)
4. \(80 \text{ mm} = \underline{\text{\hspace{1cm}}} \text{ cm}\)

5. \(100 \text{ cm} = \underline{\text{\hspace{1cm}}} \text{ m}\)
6. \(500 \text{ cm} = \underline{\text{\hspace{1cm}}} \text{ m}\)

7. \(2000 \text{ mm} = \underline{\text{\hspace{1cm}}} \text{ m}\)
8. \(1\frac{1}{2} \text{ km} = \underline{\text{\hspace{1cm}}} \text{ m}\)

9. \(2 \text{ cm} = \underline{\text{\hspace{1cm}}} \text{ mm}\)
10. \(\frac{1}{2} \text{ cm} = \underline{\text{\hspace{1cm}}} \text{ mm}\)

11. \(1 \text{ m} = \underline{\text{\hspace{1cm}}} \text{ mm}\)
12. \(6 \text{ cm } 7 \text{ mm} = \underline{\text{\hspace{1cm}}} \text{ mm}\)

13. \(3\frac{1}{2} \text{ m} = \underline{\text{\hspace{1cm}}} \text{ mm}\)
14. \(2\frac{1}{4} \text{ km} = \underline{\text{\hspace{1cm}}} \text{ m}\)
Ordering lengths

Write the length of each snake in metres.

1. 1.47 m

1. 1 m 47 cm

2. 1 m 39 cm

3. 2 m 14 cm

4. 1 m 10 cm

5. 3 m 50 cm

6. 6 m 24 cm

7. 35 cm

8. 10 m 10 cm

9. Write the snake lengths in order from smallest to largest.

Solve these problems

10. A beetle measures 88 mm in length. Write its length in centimetres.

11. A young lion is 1 m 26 cm long. If he grows 20 cm in a year write his length in metres.

12. Parvati puts these lengths in order smallest to largest: 1.5 m, 1.49 m, 1.61 m, 2.01 m. Is she correct? If not, write the lengths in order from smallest to largest.
Measuring area

Colour the leaves and write the area of each one.

Count part squares only if they are more than half.

A squares B squares C squares
D squares E squares F squares
Measuring area

Write the area of each shape.

A

squares

B

squares

C

squares

D

squares

E

squares

F

squares

G

squares

H

squares

I

squares

Which shape has:

1. the smallest area? []

2. the greatest area? []
Tally chart

The tally chart shows the frequency of vowels in a short piece of writing. Write the totals.

<table>
<thead>
<tr>
<th>Vowel</th>
<th>Tally</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>i</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>o</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>u</td>
<td>III</td>
<td></td>
</tr>
</tbody>
</table>

How many times did these vowels appear?

1. a [] times
2. u [] times
3. o [] times

Which vowel appeared:

4. most often? []
5. least often? []

How many times did these appear?

6. e or i [] times
7. a or o [] times
8. a, e or i [] times
9. i, o or u [] times
Frequency table

Fill in the frequency table to show how many times each digit appears in these telephone numbers.

Sandeep 03925 685270
Yuki 02785 932510
Maria 09316 285941
Amal 05618 223497

<table>
<thead>
<tr>
<th>Digit</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td></td>
</tr>
</tbody>
</table>

What is the most common:
1. odd digit? [] 2. even digit? []

What is the least common:
3. odd digit? [] 4. even digit? []
Pictogram

Sunny days this year

April O O
May O O O
June O O O O
July O O O O

Key
O means 4 days

The pictogram shows the number of sunny days in 4 months.

How many sunny days were there in:
1. May?
2. July?
3. June?
4. April?
5. April and May?
6. June and July?

How many days were not sunny in:
7. June?
8. May?
9. July?
Goals scored this season

Albion

Town

Rovers

City

United

Key

○ means 2 goals

How many goals were scored by:

1. Rovers?
2. City?
3. Albion?

4. United?
5. Town?

How many more goals were scored by:

6. Town than Rovers?
7. City than United?

8. Albion than United?
9. City than Town?
Totals

Write the total number of goals scored by each team from September to January.

<table>
<thead>
<tr>
<th></th>
<th>Chestertown</th>
<th>Pontville</th>
<th>Nettlecombe Rangers</th>
<th>Tunston Hill</th>
<th>Shoremouth</th>
<th>Aberlonian</th>
<th>Mumberry Forest</th>
<th>Linham United</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sept</td>
<td>8</td>
<td>11</td>
<td>5</td>
<td>4</td>
<td>12</td>
<td>8</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>Oct</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Nov</td>
<td>4</td>
<td>7</td>
<td>14</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>Dec</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>3</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>Jan</td>
<td>6</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. Team with most goals: ____________________________

2. Team with fewest goals: ____________________________
Money totals

Each letter of the alphabet has been given a value:

<table>
<thead>
<tr>
<th>Letter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>12p</td>
</tr>
<tr>
<td>b</td>
<td>7p</td>
</tr>
<tr>
<td>c</td>
<td>8p</td>
</tr>
<tr>
<td>d</td>
<td>6p</td>
</tr>
<tr>
<td>e</td>
<td>10p</td>
</tr>
<tr>
<td>f</td>
<td>9p</td>
</tr>
<tr>
<td>g</td>
<td>8p</td>
</tr>
<tr>
<td>h</td>
<td>6p</td>
</tr>
<tr>
<td>i</td>
<td>10p</td>
</tr>
<tr>
<td>j</td>
<td>12p</td>
</tr>
<tr>
<td>k</td>
<td>9p</td>
</tr>
<tr>
<td>l</td>
<td>8p</td>
</tr>
<tr>
<td>m</td>
<td>7p</td>
</tr>
<tr>
<td>n</td>
<td>6p</td>
</tr>
<tr>
<td>o</td>
<td>10p</td>
</tr>
<tr>
<td>p</td>
<td>6p</td>
</tr>
<tr>
<td>q</td>
<td>12p</td>
</tr>
<tr>
<td>r</td>
<td>11p</td>
</tr>
<tr>
<td>s</td>
<td>11p</td>
</tr>
<tr>
<td>t</td>
<td>10p</td>
</tr>
<tr>
<td>u</td>
<td>12p</td>
</tr>
<tr>
<td>v</td>
<td>9p</td>
</tr>
<tr>
<td>w</td>
<td>11p</td>
</tr>
<tr>
<td>x</td>
<td>9p</td>
</tr>
<tr>
<td>y</td>
<td>12p</td>
</tr>
</tbody>
</table>

Write the value of the names of these animals.

1. dog p
2. cat p
3. goat p
4. lamb p
5. tiger p
6. rabbit p

Choose four other animals and find their values.

7. ___________________ p
8. ___________________ p
9. ___________________ p
10. ___________________ p
Row and column totals

Write the total of each row and column.

<table>
<thead>
<tr>
<th>5</th>
<th>4</th>
<th>2</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>9</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3</th>
<th>8</th>
<th>5</th>
<th>11</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>4</td>
<td>10</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>7</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>2</td>
<td>9</td>
<td>5</td>
</tr>
</tbody>
</table>
Adding and subtracting multiples of 10

Complete the additions and subtractions.

1. $230 + 40 =$
2. $350 + 20 =$

3. $590 - 30 =$
4. $470 - 60 =$

5. $170 + 50 =$
6. $480 + 60 =$

7. $230 - 50 =$
8. $520 - 40 =$

9. $370 + 60 =$
10. $590 + 40 =$

11. $710 - 40 =$
12. $630 - 70 =$

13. $850 + 70 =$
14. $220 + 90 =$

15. $530 - 80 =$
16. $840 - 60 =$

Adding and subtracting multiples of 100

Write the missing numbers.

1. \[1400 + \underline{\quad} = 1900\]
2. \[1700 - \underline{\quad} = 1400\]
3. \[2500 + \underline{\quad} = 3100\]
4. \[3100 - \underline{\quad} = 2400\]
5. \[1200 - \underline{\quad} = 500\]
6. \[700 + \underline{\quad} = 1500\]
7. \[3300 - \underline{\quad} = 2700\]
8. \[1800 + \underline{\quad} = 2700\]
9. \[5600 + \underline{\quad} = 6300\]
10. \[6200 - \underline{\quad} = 5800\]
11. \[8300 - \underline{\quad} = 7000\]
12. \[4200 + \underline{\quad} = 6000\]
13. \[2700 + \underline{\quad} = 3600\]
14. \[9100 - \underline{\quad} = 8300\]
Analogue and digital times

Write the matching digital times.

1. [Clock Image] 1:27
2. [Clock Image] [Blank]
3. [Clock Image] [Blank]
4. [Clock Image] [Blank]
5. [Clock Image] [Blank]
6. [Clock Image] [Blank]
7. [Clock Image] [Blank]
8. [Clock Image] [Blank]
9. [Clock Image] [Blank]
10. [Clock Image] [Blank]
11. [Clock Image] [Blank]
12. [Clock Image] [Blank]
Minute hand

Draw the minute hand on each clock.

1. 4:43
2. 3:36
3. 6:08
4. 7:52
5. 10:43
6. 5:17
7. 9:29
8. 1:03
9. 2:13
10. 12:28
11. 11:46
12. 8:57
Minutes and seconds

1. 1 minute = __________ secs
2. $\frac{1}{4}$ minute = __________ secs
3. 1 min 35 secs = __________ secs
4. $2 \frac{1}{2}$ mins = __________ secs
5. 3 mins 7 secs = __________ secs
6. 10 mins = __________ secs

Write the matching number of minutes and seconds.

7. 90 seconds = __________ minutes __________ seconds
8. 65 seconds = __________ minutes __________ seconds
9. 135 seconds = __________ minutes __________ seconds
10. 200 seconds = __________ minutes __________ seconds
11. 100 seconds = __________ minutes __________ seconds
Sequences

Write the next three numbers in each sequence.

1. 20 18 16

2. 12 15 18

3. 65 60 55

4. 250 300 350

5. 8 12 16

6. 75 100 125

7. 100 95 90

Invent two of your own.

8.

9.
The next multiple

Complete the table by writing the next:

<table>
<thead>
<tr>
<th></th>
<th>multiple of 2</th>
<th>multiple of 10</th>
<th>multiple of 5</th>
<th>multiple of 3</th>
<th>multiple of 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>14</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Division machines

Complete the tables to show the numbers coming out of the machines.

1. ![Diagram](image1)
<table>
<thead>
<tr>
<th>IN</th>
<th>18</th>
<th>6</th>
<th>24</th>
<th>9</th>
<th>15</th>
<th>21</th>
<th>12</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. ![Diagram](image2)
<table>
<thead>
<tr>
<th>IN</th>
<th>20</th>
<th>30</th>
<th>15</th>
<th>40</th>
<th>25</th>
<th>10</th>
<th>45</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. ![Diagram](image3)
<table>
<thead>
<tr>
<th>IN</th>
<th>10</th>
<th>14</th>
<th>6</th>
<th>18</th>
<th>4</th>
<th>16</th>
<th>8</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. ![Diagram](image4)
<table>
<thead>
<tr>
<th>IN</th>
<th>8</th>
<th>24</th>
<th>16</th>
<th>32</th>
<th>28</th>
<th>12</th>
<th>36</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Units digit of multiples

Complete the grid, writing the units digit of each multiple.

<table>
<thead>
<tr>
<th>x1</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>x2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>x3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x4</td>
<td></td>
</tr>
<tr>
<td>x5</td>
<td></td>
</tr>
<tr>
<td>x6</td>
<td></td>
</tr>
<tr>
<td>x7</td>
<td></td>
</tr>
<tr>
<td>x8</td>
<td></td>
</tr>
<tr>
<td>x9</td>
<td></td>
</tr>
<tr>
<td>x10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Write about any patterns that you see.
Fractions

Colour part of each shape to match the fractions.

1. \(\frac{7}{10} \)

2. \(\frac{2}{3} \)

3. \(\frac{3}{4} \)

4. \(\frac{5}{6} \)

5. \(\frac{1}{4} \)

6. \(\frac{2}{3} \)

7. \(\frac{3}{8} \)

8. \(\frac{7}{9} \)

9. \(\frac{3}{5} \)

10. \(\frac{5}{6} \)
Fractions

Write the fraction of people that:

1. are wearing a hat
2. are happy
3. are sad
4. are not wearing a scarf
5. have pointed ears
6. have rounded ears
7. are happy and wearing a hat
8. are sad and have pointed ears
Mixed numbers and improper fractions

Write a matching mixed number for each improper fraction.

1. $\frac{7}{3} = \underline{\quad}$
2. $\frac{10}{7} = \underline{\quad}$
3. $\frac{15}{4} = \underline{\quad}$
4. $\frac{18}{5} = \underline{\quad}$
5. $\frac{27}{2} = \underline{\quad}$
6. $\frac{11}{6} = \underline{\quad}$
7. $\frac{27}{8} = \underline{\quad}$
8. $\frac{34}{10} = \underline{\quad}$
9. $\frac{20}{7} = \underline{\quad}$

Write a matching improper fraction for each mixed number.

10. $3\frac{1}{2} = \underline{\quad}$
11. $4\frac{1}{4} = \underline{\quad}$
12. $4\frac{2}{3} = \underline{\quad}$
13. $5\frac{2}{5} = \underline{\quad}$
14. $10\frac{1}{3} = \underline{\quad}$
15. $3\frac{1}{6} = \underline{\quad}$
16. $2\frac{3}{5} = \underline{\quad}$
17. $4\frac{7}{10} = \underline{\quad}$
18. $6\frac{5}{8} = \underline{\quad}$
Matching fractions

Write the missing numbers to make pairs of matching fractions.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (\frac{1}{3}) =</td>
<td>(\frac{3}{6})</td>
<td></td>
</tr>
<tr>
<td>2. (\frac{4}{6}) =</td>
<td>(\frac{2}{3})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. (\frac{8}{8}) =</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5. (\frac{1}{2}) =</td>
<td>(\frac{16}{16})</td>
<td></td>
</tr>
<tr>
<td>6. (\frac{3}{6}) =</td>
<td>(\frac{12}{12})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. (\frac{4}{4}) =</td>
<td>(\frac{12}{12})</td>
<td></td>
</tr>
<tr>
<td>8. (\frac{2}{6}) =</td>
<td>(\frac{3}{6})</td>
<td></td>
</tr>
<tr>
<td>9. (\frac{6}{8}) =</td>
<td>(\frac{12}{12})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. (\frac{1}{2}) =</td>
<td>(\frac{4}{4})</td>
<td></td>
</tr>
<tr>
<td>11. (\frac{4}{4}) =</td>
<td>(\frac{6}{8})</td>
<td></td>
</tr>
<tr>
<td>12. (\frac{4}{4}) =</td>
<td>(\frac{3}{12})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. (\frac{3}{4}) =</td>
<td>(\frac{16}{16})</td>
<td></td>
</tr>
<tr>
<td>14. (\frac{1}{2}) =</td>
<td>(\frac{12}{12})</td>
<td></td>
</tr>
<tr>
<td>15. (\frac{1}{3}) =</td>
<td>(\frac{12}{12})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. (\frac{4}{4}) =</td>
<td>(\frac{4}{8})</td>
<td></td>
</tr>
<tr>
<td>17. 1 =</td>
<td>(\frac{6}{6})</td>
<td></td>
</tr>
<tr>
<td>18. (\frac{10}{10}) =</td>
<td>(\frac{2}{5})</td>
<td></td>
</tr>
</tbody>
</table>
More and less

Complete the table.

<table>
<thead>
<tr>
<th></th>
<th>1 more</th>
<th>10 less</th>
<th>100 more</th>
<th>1000 less</th>
</tr>
</thead>
<tbody>
<tr>
<td>5836</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2790</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3025</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4108</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1893</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8947</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5574</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8049</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7663</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2951</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3210</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6499</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Greater than, less than

Write > or < between each pair of numbers.

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>359</td>
<td></td>
<td>416</td>
<td>2</td>
<td>3712</td>
<td></td>
<td>3721</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4083</td>
<td></td>
<td>4830</td>
<td>4</td>
<td>1947</td>
<td></td>
<td>2138</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>6217</td>
<td></td>
<td>6712</td>
<td>6</td>
<td>5803</td>
<td></td>
<td>5308</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>8315</td>
<td></td>
<td>8317</td>
<td>8</td>
<td>7512</td>
<td></td>
<td>7509</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>6873</td>
<td></td>
<td>6783</td>
<td>10</td>
<td>4938</td>
<td></td>
<td>4939</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>2186</td>
<td></td>
<td>2180</td>
<td>12</td>
<td>1079</td>
<td></td>
<td>1790</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>4532</td>
<td></td>
<td>4523</td>
<td>14</td>
<td>37186</td>
<td></td>
<td>35249</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>43874</td>
<td></td>
<td>45679</td>
<td>16</td>
<td>28136</td>
<td></td>
<td>28126</td>
<td>17</td>
</tr>
<tr>
<td>17</td>
<td>7948</td>
<td></td>
<td>7089</td>
<td>18</td>
<td>2816</td>
<td></td>
<td>2815</td>
<td>18</td>
</tr>
</tbody>
</table>
Greater than, less than

Write a possible missing digit in each box.

1. $3526 < 35\underline{}6$
2. $8174 > 81\underline{}4$
3. $83\underline{}2 > 8382$
4. $567\underline{} < 5677$
5. $3429 < 3\underline{}29$
6. $7153 > \underline{}153$
7. $2801 > 27\underline{}5$
8. $3899 < 3\underline{}99$
9. $72\underline{}5 > 7255$
10. $865\underline{} < 8660$
11. $2739 < 27\underline{}0$
12. $3789 < 37\underline{}0$
13. $54\underline{}6 > 546$
14. $9389 > 93\underline{}9$
15. $47326 > 4732\underline{}$
16. $514\underline{}6 < 51420$
Half-way numbers

Write the number half way between each pair.

1. 3860 3880
2. 4170 4180
3. 5300 5700
4. 2800 3000
5. 4730 4790
6. 2645 2655
7. 3127 3327
8. 9535 9565
9. 6520 8520
Odd and even

Use the digits in each cloud to make these numbers:

1. smallest odd: 5 3
 largest odd: 8
 smallest even: 3
 largest even:

2. smallest odd: 7 4 6
 largest odd:
 smallest even:
 largest even:

3. smallest odd: 2 5
 largest odd: 3 8
 smallest even:
 largest even:

4. smallest odd: 5 4 6
 largest odd:
 smallest even:
 largest even:

Name: _____________________
Negative numbers

Write the temperature after each increase or decrease.

1. 11°C, up 3°C
2. 12°C, down 5°C
3. 18°C, down 9°C
4. -5°C, up 8°C
5. 3°C, down 8°C
6. 11°C, down 12°C
7. -15°C, up 7°C
8. 8°C, down 13°C
9. -6°C, down 5°C
10. -3°C, up 11°C
Doubling and halving

Write the missing numbers.

1. double 8 = ____________
2. double 6 = ____________
3. half of 14 = ____________
4. half of 18 = ____________
5. double 20 = ____________
6. double 50 = ____________
7. half of 60 = ____________
8. half of 80 = ____________
9. double 15 = ____________
10. double 35 = ____________
11. half of 50 = ____________
12. half of 90 = ____________
13. double 80 = ____________
14. double 65 = ____________
15. half of 110 = ____________
16. half of 120 = ____________
17. double 75 = ____________
18. double 95 = ____________
Doubling and halving

Double each number.

1. 23 14 32 43 21 36 49 28 47 57

Halve each number.

2. 84 66 48 26 68 96 74 66 92 76
Near doubles

Use the doubles to complete the additions.

1.
 Double 38 = 76
 \[38 + 39 = \quad \quad \quad 37 + 38 = \quad \quad \quad \]
 \[38 + 35 = \quad \quad \quad 38 + 41 = \quad \quad \quad \]

2.
 Double 27 = 54
 \[27 + 28 = \quad \quad \quad 27 + 25 = \quad \quad \quad \]
 \[26 + 27 = \quad \quad \quad 27 + 31 = \quad \quad \quad \]

3.
 Double 87 = 174
 \[87 + 89 = \quad \quad \quad 87 + 86 = \quad \quad \quad \]
 \[85 + 87 = \quad \quad \quad 86 + 88 = \quad \quad \quad \]

4.
 Double 173 = 346
 \[173 + 172 = \quad \quad \quad 174 + 171 = \quad \quad \quad \]
 \[169 + 173 = \quad \quad \quad 172 + 172 = \quad \quad \quad \]

5.
 Double 457 = 914
 \[457 + 458 = \quad \quad \quad 457 + 455 = \quad \quad \quad \]
 \[459 + 457 = \quad \quad \quad 452 + 458 = \quad \quad \quad \]
Doubling and halving

Double each number.

1.
 - 340
 - 230
 - 420
 - 120
 - 370
 - 470
 - 460
 - 390
 - double

Halve each number.

2.
 - 640
 - 260
 - 880
 - 360
 - 540
 - 760
 - 720
 - 1040
 - half
Dice doubling

For each row, roll a dice twice and write the digits in the blank boxes on the left. Write the double of this number in the boxes on the right.

1.

2.

3.

4.

5.

6.

7.

8.

Try halving the numbers on the left.
Symmetrical shapes

Draw the other half of each shape to make shapes that are symmetrical.

1.
2.
3.

Draw your own symmetrical shapes with these lines of symmetry.

4.
5.
6.

7.
8.
9.
Shape dice

Stick this net onto a piece of card and cut it out to make a shape dice.

Invent a game using the dice.
Net of a tetrahedron

Cut, fold and glue this net to make a tetrahedron.
Litres and millilitres

Write the equivalent capacities.

1. \(l = \quad \quad \quad \text{ml} \)
2. \(\frac{1}{2} l = \quad \quad \quad \text{ml} \)

3. \(2000 \text{ml} = \quad \quad \quad l \)
4. \(\frac{3}{4} l = \quad \quad \quad \text{ml} \)

5. \(\frac{1}{2} l = \quad \quad \quad \text{ml} \)
6. \(250 \text{ml} = \quad \quad \quad l \)

7. \(6500 \text{ml} = \quad \quad \quad l \)
8. \(\frac{1}{10} l = \quad \quad \quad \text{ml} \)

9. \(2 l 700 \text{ml} = \quad \quad \quad \text{ml} \)
10. \(5 l 100 \text{ml} = \quad \quad \quad \text{ml} \)

11. \(11000 \text{ml} = \quad \quad \quad l \)
12. \(2\frac{3}{4} l = \quad \quad \quad \text{ml} \)

13. \(3\frac{1}{2} l = \quad \quad \quad \text{ml} \)
14. \(10 l = \quad \quad \quad \text{ml} \)
Ordering capacities

Write the capacity of each jar of potion in litres.

1. 1.3 litres
2. 1 l 400 ml
3. 2 l 100 ml
4. 4 l 500 ml
5. 3 l 800 ml
6. 6 l 200 ml
7. 6 l 150 ml
8. 10 l 10 ml

9. Write the capacities in order from smallest to largest.

Solve these problems

10. A teapot contains 1.2 litres. A mug holds 220 ml. How many mugs of tea can be poured from this teapot?

11. A baby drinks 120 ml, five times a day. How much does she drink in one week? Write the quantity in litres.

12. The large family shampoo bottle holds 1.1 litres. If the family use \(\frac{1}{4} \) of a litre each week, how long will the bottle last?
Timetable

<table>
<thead>
<tr>
<th>Location</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barfield</td>
<td>8:02</td>
</tr>
<tr>
<td>Moss</td>
<td>8:09</td>
</tr>
<tr>
<td>Kirk Valley</td>
<td>8:13</td>
</tr>
<tr>
<td>Upton</td>
<td>8:21</td>
</tr>
<tr>
<td>Dunford</td>
<td>8:43</td>
</tr>
<tr>
<td>Aston</td>
<td>8:57</td>
</tr>
<tr>
<td>Lepton</td>
<td>9:11</td>
</tr>
<tr>
<td>Notton</td>
<td>9:23</td>
</tr>
<tr>
<td>Carlow</td>
<td>9:29</td>
</tr>
<tr>
<td>Gentley</td>
<td>9:38</td>
</tr>
</tbody>
</table>

Write the time taken from:

1. Barfield to Moss
2. Barfield to Upton
3. Barfield to Aston
4. Moss to Dunford
5. Aston to Lepton
6. Dunford to Notton
7. Dunford to Carlow
8. Aston to Gentley
Timetable

Invent your own timetable for a day out.

Write what time each event starts and how long each event takes.

<table>
<thead>
<tr>
<th>Event</th>
<th>Time</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Write the perimeter of each shape.

<table>
<thead>
<tr>
<th>Shape</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perimeter in cm</td>
<td></td>
</tr>
</tbody>
</table>
Rectangle areas and perimeters

Write the area and perimeter of each of these rectangles.

1. area: __4__ cm² perimeter: __8__ cm difference: __4__ cm
2. area: ______ cm² perimeter: ______ cm difference: ______ cm
3. area: ______ cm² perimeter: ______ cm difference: ______ cm

Write the difference between the area and the perimeter.

Complete the table to show the difference between the area and the perimeter of each of the rectangles from 1 cm × 1 cm to 6 cm × 6 cm.

<table>
<thead>
<tr>
<th>length (cm)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>width (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What patterns can you see?
Bar graphs

These graphs show the number of children present in Y3 and Y4.

1. Monday?
2. Friday?
3. Thursday?
4. Tuesday?

How many Y4 children were present on:

5. Wednesday?
6. Friday?
7. Monday?
8. Thursday?

There are 32 children in Y3 and 28 in Y4.

Write the number of absences on:

9. Tuesday Y3
 Y4
10. Friday Y3
 Y4
Bar graphs

Complete the bar graph using the figures in the table.

How we come to school

<table>
<thead>
<tr>
<th>Transport</th>
<th>bike</th>
<th>foot</th>
<th>car</th>
<th>bus</th>
<th>coach</th>
<th>other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of children</td>
<td>18</td>
<td>26</td>
<td>15</td>
<td>9</td>
<td>7</td>
<td>14</td>
</tr>
</tbody>
</table>

Write about the graph.
Adding three numbers

Complete the additions.

1. $23 + 35 + 41 = \underline{_______}$
2. $51 + 13 + 24 = \underline{_______}$
3. $46 + 24 + 33 = \underline{_______}$
4. $37 + 33 + 42 = \underline{_______}$
5. $28 + 51 + 19 = \underline{_______}$
6. $63 + 47 + 55 = \underline{_______}$
7. $49 + 81 + 29 = \underline{_______}$
8. $55 + 65 + 31 = \underline{_______}$
9. $27 + 85 + 43 = \underline{_______}$
10. $48 + 63 + 29 = \underline{_______}$
11. $33 + 72 + 58 = \underline{_______}$
12. $42 + 25 + 67 = \underline{_______}$
13. $19 + 81 + 77 = \underline{_______}$
14. $48 + 54 + 76 = \underline{_______}$
15. $84 + 27 + 93 = \underline{_______}$
16. $52 + 69 + 35 = \underline{_______}$
Making totals

Choose three of the numbers to make each total. Write them on the balloons.

1. \(\boxed{31} + \boxed{42} + \boxed{25} = 105 \)

2. \(\boxed{31} + \boxed{46} + \boxed{27} = 111 \)

3. \(\boxed{25} + \boxed{46} + \boxed{53} = 112 \)

4. \(\boxed{31} + \boxed{27} + \boxed{46} = 86 \)

5. \(\boxed{42} + \boxed{53} + \boxed{27} = 141 \)

6. \(\boxed{31} + \boxed{42} + \boxed{53} = 92 \)
Subtracting

Complete the subtractions.

1. $21 - 3 =$
2. $32 - 5 =$
3. $43 - 9 =$
4. $63 - 8 =$
5. $23 - 14 =$
6. $75 - 16 =$
7. $34 - 18 =$
8. $82 - 24 =$
9. $91 - 18 =$
10. $54 - 18 =$
11. $62 - 27 =$
12. $33 - 16 =$
13. $44 - 19 =$
14. $25 - 19 =$
15. $53 - 25 =$
16. $46 - 29 =$
17. $27 - 18 =$
18. $85 - 56 =$
Problems

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>So far this year, 17 weeks have passed. How many more weeks are left?</td>
</tr>
<tr>
<td>2.</td>
<td>Gareth is 23 years younger than his mother, who is 41. How old is Gareth?</td>
</tr>
<tr>
<td>3.</td>
<td>In a class of 32 children, 15 are girls. How many are boys?</td>
</tr>
<tr>
<td>4.</td>
<td>Jane had a box of 52 chocolates. Yesterday she ate 13. How many does she have left?</td>
</tr>
<tr>
<td>5.</td>
<td>There are 32 days until my birthday. In 2 weeks time, how many more days will I have to wait?</td>
</tr>
<tr>
<td>6.</td>
<td>A blackbird is 5 weeks old and a robin is 62 days old. Which bird is the oldest and by how many days?</td>
</tr>
<tr>
<td>7.</td>
<td>Two numbers have a total of 56 and a difference of 18. What are the numbers?</td>
</tr>
<tr>
<td>8.</td>
<td>If I double a number and then subtract 19, the answer is 29. What is the number?</td>
</tr>
</tbody>
</table>
Rising prices

The price of all toys is going up by 29p. Write the new prices.

1. 34p →
2. 56p →
3. 67p →
4. 28p →
5. 42p →
6. 73p →
7. £1.26 →
8. £2.58 →
Adding and subtracting near multiples of 10

Complete the additions.

1. \(73 + 9 = \)
2. \(92 - 9 = \)
3. \(48 + 19 = \)
4. \(76 - 19 = \)
5. \(51 + 29 = \)
6. \(84 - 29 = \)
7. \(142 + 19 = \)
8. \(173 - 19 = \)
9. \(256 + 39 = \)
10. \(845 - 9 = \)
11. \(185 + 59 = \)
12. \(417 - 29 = \)
13. \(324 + 18 = \)
14. \(211 + 38 = \)
15. \(589 - 18 = \)
16. \(468 - 28 = \)
17. \(287 - 48 = \)
18. \(229 + 58 = \)
Adding

Write an estimate for each addition in the loops.

Complete the additions.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>423</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>516</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>237</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4.</td>
<td>157</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>5.</td>
<td>218</td>
<td>156</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6.</td>
<td>324</td>
<td>287</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>7.</td>
<td>153</td>
<td>278</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>8.</td>
<td>426</td>
<td>349</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>9.</td>
<td>456</td>
<td>267</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>10.</td>
<td>138</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>11.</td>
<td>246</td>
<td>364</td>
</tr>
<tr>
<td></td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>12.</td>
<td>582</td>
<td>259</td>
</tr>
</tbody>
</table>
Adding 3-digit numbers

A game for two or more players, each with a copy of this score sheet. For each round, roll a dice six times. After each throw all players write the number in any one of their boxes. After the sixth throw the players add their two numbers together, checking each other’s totals. The player closest to 800 scores 5 points, the next closest 4 points, and so on. The winner is the one with most points after four rounds.

Round 1

+ [Boxes for numbers]

SCORE [Boxes for scores]

Round 2

+ [Boxes for numbers]

SCORE [Boxes for scores]

Round 3

+ [Boxes for numbers]

SCORE [Boxes for scores]

Round 4

+ [Boxes for numbers]

SCORE [Boxes for scores]
Sixes

Continue writing the numbers in rows of 6.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Write the multiples of 6 up to 60.

6
Multiplying and dividing by 6

Complete the multiplications and divisions.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>5×6</td>
<td>=</td>
<td></td>
<td>2.</td>
</tr>
<tr>
<td>3.</td>
<td>$60 \div 6$</td>
<td>=</td>
<td></td>
<td>4.</td>
</tr>
<tr>
<td>5.</td>
<td>7×6</td>
<td>=</td>
<td></td>
<td>6.</td>
</tr>
<tr>
<td>7.</td>
<td>6×6</td>
<td>=</td>
<td></td>
<td>8.</td>
</tr>
<tr>
<td>9.</td>
<td>4×6</td>
<td>=</td>
<td></td>
<td>10.</td>
</tr>
<tr>
<td>11.</td>
<td>$48 \div 6$</td>
<td>=</td>
<td></td>
<td>12.</td>
</tr>
<tr>
<td>13.</td>
<td>2×6</td>
<td>=</td>
<td></td>
<td>14.</td>
</tr>
<tr>
<td>15.</td>
<td>8×6</td>
<td>=</td>
<td></td>
<td>16.</td>
</tr>
<tr>
<td>17.</td>
<td>$42 \div 6$</td>
<td>=</td>
<td></td>
<td>18.</td>
</tr>
</tbody>
</table>
Eights

Continue writing the numbers in rows of 8.

1 2 3 4 5 6 7 8
9 10 11

Write the multiples of 8 up to 80.

8
Multiplying and dividing by 8

Complete the multiplications and divisions.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2×8 =</td>
<td>2. 7×8 =</td>
<td></td>
</tr>
<tr>
<td>3. $80 \div 8$ =</td>
<td>4. $40 \div 8$ =</td>
<td></td>
</tr>
<tr>
<td>5. 9×8 =</td>
<td>6. 8×8 =</td>
<td></td>
</tr>
<tr>
<td>7. $24 \div 8$ =</td>
<td>8. $16 \div 8$ =</td>
<td></td>
</tr>
<tr>
<td>9. $56 \div 8$ =</td>
<td>10. 3×8 =</td>
<td></td>
</tr>
<tr>
<td>11. $32 \div 8$ =</td>
<td>12. 10×8 =</td>
<td></td>
</tr>
<tr>
<td>13. $48 \div 8$ =</td>
<td>14. 5×8 =</td>
<td></td>
</tr>
<tr>
<td>15. 4×8 =</td>
<td>16. $72 \div 8$ =</td>
<td></td>
</tr>
<tr>
<td>17. 6×8 =</td>
<td>18. $64 \div 8$ =</td>
<td></td>
</tr>
</tbody>
</table>
Multiplying by 8, 80 and 800

Complete the multiplications.

1. \(7 \times 8 = \)
 \(7 \times 80 = \)

2. \(5 \times 8 = \)
 \(5 \times 80 = \)

3. \(9 \times 8 = \)
 \(9 \times 80 = \)

4. \(4 \times 80 = \)

5. \(8 \times 80 = \)

6. \(3 \times 800 = \)

7. \(6 \times 800 = \)

8. \(2 \times 800 = \)

9. \(7 \times 800 = \)

10. \(5 \times 800 = \)

11. \(9 \times 800 = \)

12. \(40 \times 8 = \)

13. \(70 \times 8 = \)
Fractions on a number line

Write the fraction shown by each pointer.

1.

\[0 \quad \rightarrow \quad 1\]

2.

\[0 \quad \rightarrow \quad 1\]

3.

\[0 \quad \rightarrow \quad 1\]

4.

\[0 \quad \rightarrow \quad 1\]

5.

\[0 \quad \rightarrow \quad 1\]
Comparing fractions

<table>
<thead>
<tr>
<th>1/2</th>
<th>1/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td>1/4</td>
<td>1/4</td>
</tr>
<tr>
<td>1/6</td>
<td>1/6</td>
</tr>
<tr>
<td>1/8</td>
<td>1/8</td>
</tr>
<tr>
<td>1/12</td>
<td>1/12</td>
</tr>
</tbody>
</table>

Write <, > or = between each pair.

1. \(\frac{1}{4} \) __ \(\frac{1}{2} \)
2. \(\frac{1}{3} \) __ \(\frac{1}{4} \)
3. \(\frac{2}{3} \) __ \(\frac{3}{4} \)
4. \(\frac{1}{4} \) __ \(\frac{3}{8} \)
5. \(\frac{5}{6} \) __ \(\frac{3}{4} \)
6. \(\frac{5}{8} \) __ \(\frac{2}{3} \)
7. \(\frac{7}{12} \) __ \(\frac{1}{2} \)
8. \(\frac{8}{12} \) __ \(\frac{2}{3} \)
9. \(\frac{5}{12} \) __ \(\frac{3}{6} \)
10. \(\frac{3}{4} \) __ \(\frac{9}{12} \)
11. \(\frac{2}{6} \) __ \(\frac{4}{12} \)
12. \(\frac{3}{8} \) __ \(\frac{1}{3} \)
Mixed numbers

Write each mixed number as a fraction and as a decimal.

1. \(\frac{3}{10} \)
2. 1.3

3.
4.

5.
6.

7.
8.

9.
10.

11.
12.

(Complete the grid for each mixed number to represent the fraction and the decimal.)
Weighing scales

Write each weight shown on the scales as a decimal.

1. __________ kg
2. __________ kg
3. __________ kg
4. __________ kg
5. __________ kg
6. __________ kg
7. __________ kg
8. __________ kg
9. __________ kg
Measuring lengths

Measure each pen and write the length in centimetres using decimals.

1. __________ cm
2. __________ cm
3. __________ cm
4. __________ cm
5. __________ cm
6. __________ cm
7. __________ cm
8. __________ cm
Rounding

Write the position shown by each pointer. Round each position to the nearest 10.

1. 70
 position
 nearest 10

2. 200
 position
 nearest 10

3. 120
 position
 nearest 10
Rounding

Choose from these digits to make numbers that round to the nearest 10 shown.

1. _______________ → 240
2. _______________ → 370
3. _______________ → 330
4. _______________ → 280
5. _______________ → 870
6. _______________ → 740
7. _______________ → 270
8. _______________ → 380
9. _______________ → 820
10. _______________ → 780
11. _______________ → 840
12. _______________ → 290
13. _______________ → 730
14. _______________ → 290
Rounding money

Round each amount to the nearest 10p and the nearest £1.

<table>
<thead>
<tr>
<th>Amount</th>
<th>Nearest 10p</th>
<th>Nearest £1</th>
</tr>
</thead>
<tbody>
<tr>
<td>£4.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£3.62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£7.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£5.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£1.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£6.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£2.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£8.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£14.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£7.26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£11.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>£3.97</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multiplying and dividing by 10 and 100

Complete the multiplications and divisions.

1. $7 \times 10 = \underline{\hspace{2cm}}$
2. $31 \times 10 = \underline{\hspace{2cm}}$
3. $5 \times 100 = \underline{\hspace{2cm}}$
4. $17 \times 100 = \underline{\hspace{2cm}}$
5. $42 \times 10 = \underline{\hspace{2cm}}$
6. $36 \times 100 = \underline{\hspace{2cm}}$
7. $170 \times 10 = \underline{\hspace{2cm}}$
8. $60 \times 100 = \underline{\hspace{2cm}}$
9. $10 \times 11 = \underline{\hspace{2cm}}$
10. $100 \times 12 = \underline{\hspace{2cm}}$
11. $400 \div 10 = \underline{\hspace{2cm}}$
12. $270 \div 10 = \underline{\hspace{2cm}}$
13. $3000 \div 100 = \underline{\hspace{2cm}}$
14. $1800 \div 100 = \underline{\hspace{2cm}}$
15. $680 \div 10 = \underline{\hspace{2cm}}$
16. $900 \div 100 = \underline{\hspace{2cm}}$
17. $4300 \div 100 = \underline{\hspace{2cm}}$
18. $2700 \div 10 = \underline{\hspace{2cm}}$
19. $64000 \div 10 = \underline{\hspace{2cm}}$
20. $75000 \div 100 = \underline{\hspace{2cm}}$
Multiplying by 5 and 20

Complete the multiplications by doubling or halving.

1. \(24 \times 10 = \) \(24 \times 5 = \)
2. \(66 \times 10 = \) \(66 \times 5 = \)
3. \(42 \times 10 = \) \(42 \times 20 = \)
4. \(18 \times 10 = \) \(18 \times 20 = \)
5. \(63 \times 10 = \) \(63 \times 5 = \)
6. \(47 \times 10 = \) \(47 \times 20 = \)
7. \(82 \times 10 = \) \(82 \times 20 = \)
8. \(73 \times 10 = \) \(73 \times 5 = \)
9. \(56 \times 10 = \) \(56 \times 5 = \)
10. \(29 \times 10 = \) \(29 \times 20 = \)
Making 100

Complete the calculations to show different ways of making 100.

1. $1 \times \boxed{100} = 100$
2. $2 \times \boxed{} = 100$
3. $4 \times \boxed{} = 100$
4. $5 \times \boxed{} = 100$
5. $10 \times \boxed{} = 100$
6. $20 \times \boxed{} = 100$
7. $25 \times \boxed{} = 100$
8. $50 \times \boxed{} = 100$
9. $\boxed{} \div 5 = 100$
10. $\boxed{} \div 10 = 100$
11. $\boxed{} \div 20 = 100$
12. $\boxed{} \div 2 = 100$

Investigate different ways of making these numbers.

13. 200
14. 400
15. 1000

Now choose your own target numbers.
Subtracting

Complete the subtractions.

<table>
<thead>
<tr>
<th></th>
<th>1 3 6</th>
<th>2</th>
<th>1 4 2</th>
<th>3</th>
<th>1 2 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 0</td>
<td></td>
<td>130</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td>136</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1 4 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1 2 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3 2 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2 3 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>4 1 3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2 4 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3 3 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5 2 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Answers:

1. 58
2. 85
3. 84
4. 168
5. 466
6. 186
7. 58
8. 175
9. 152
Subtracting

Write an estimate for each subtraction in the loops.

Complete the subtractions.

1. \[
\begin{array}{c}
84 \\
-23 \\
\hline
\end{array}
\]

2. \[
\begin{array}{c}
62 \\
-36 \\
\hline
\end{array}
\]

3. \[
\begin{array}{c}
78 \\
-19 \\
\hline
\end{array}
\]

4. \[
\begin{array}{c}
93 \\
-37 \\
\hline
\end{array}
\]

5. \[
\begin{array}{c}
45 \\
-28 \\
\hline
\end{array}
\]

6. \[
\begin{array}{c}
82 \\
-57 \\
\hline
\end{array}
\]

7. \[
\begin{array}{c}
74 \\
-56 \\
\hline
\end{array}
\]

8. \[
\begin{array}{c}
61 \\
-27 \\
\hline
\end{array}
\]

9. \[
\begin{array}{c}
87 \\
-28 \\
\hline
\end{array}
\]
Subtracting

Write an estimate for each subtraction in the loops.

Complete the subtractions.

1. 583 - 142

2. 675 - 324

3. 462 - 249

4. 846 - 473

5. 534 - 382

6. 434 - 195

7. 632 - 375

8. 524 - 156

9. 713 - 387
Dice subtractions

For each question, roll a dice three times to make a 3-digit number. Write it in the blank spaces in the subtraction. Estimate first, then complete the subtraction.

1. 8 6 6
2. 7 8 4
3. 6 9 2
4. 7 6 1
5. 8 5 2
6. 9 1 3
7. 8 1 1
8. 7 1 3
9. 6 2 1
Differences

Write the differences.

2003 \(-\) 1996 =

2001 \(-\) 1995 =

2011 \(-\) 1995 =

2005 \(-\) 1987 =

2. 4980 4990 5000 5010 5020

5001 \(-\) 4996 =

5007 \(-\) 4995 =

5013 \(-\) 4994 =

5003 \(-\) 4986 =

3. 3880 3890 3900 3910 3920

3901 \(-\) 3892 =

3907 \(-\) 3896 =

3912 \(-\) 3897 =

3904 \(-\) 3889 =
Multiplying and dividing by 9

Complete the multiplications and divisions.

1. \(5 \times 9 = \)
2. \(3 \times 9 = \)
3. \(90 \div 9 = \)
4. \(18 \div 9 = \)
5. \(7 \times 9 = \)
6. \(45 \div 9 = \)
7. \(8 \times 9 = \)
8. \(54 \div 9 = \)
9. \(81 \div 9 = \)
10. \(10 \times 9 = \)
11. \(27 \div 9 = \)
12. \(2 \times 9 = \)
13. \(6 \times 9 = \)
14. \(36 \div 9 = \)
15. \(9 \times 9 = \)
16. \(72 \div 9 = \)
17. \(63 \div 9 = \)
18. \(4 \times 9 = \)
Nines digits

Complete the table.

<table>
<thead>
<tr>
<th>x9 table</th>
<th>Digit total</th>
<th>Digit difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 x 9 = 18</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>3 x 9 =</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 x 9 =</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 x 9 =</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 x 9 =</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 x 9 =</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 x 9 =</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 x 9 =</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 x 9 =</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Write about what you notice.
Nines digits

Each number is a multiple of 9. Write the missing digits.

1. 3
2. 7
3. 1
4. 4
5. 9
6. 4
7. 6
8. 2
9. 8
10. 4 1
11. 3 0
12. 5 2
13. 1 0
14. 2 1
15. 3 4
16. 5 1
17. 3 3
18. 6 7
Compass directions

Write the direction of:

1. from \(_\text{N}\)_
2. from \(_\text{_____}\)_
3. from \(_\text{_____}\)_
4. from \(_\text{_____}\)_
5. from \(_\text{_____}\)_
6. from \(_\text{_____}\)_
7. from \(_\text{_____}\)_
8. from \(_\text{_____}\)_
9. from \(_\text{_____}\)_
10. from \(_\text{_____}\)_
Compass directions

Write an object that is:

1. north of
2. south of
3. north-west of
4. south-east of
5. west of
6. east of
7. south-west of
8. north-east of
Directions

A game for two players. You will need a counter each. Make a direction dice by writing NE, NW, SE, SW, E, W on the faces of a blank cube. Place your counters on ‘Start’. Take turns to roll the dice and move your counter one space in the direction shown. You lose if you fall in the water!
Right angles

Write the number of right angles shaded.

1. 2. 3. 4. 5. 6. 7. 8. 9.
Angles in shapes

Write the number of degrees for each angle.

a _ _ _ _ _ \^_°

c _ _ _ _ _ \^_°

e _ _ _ _ _ \^_°

b _ _ _ _ _ \^_°

d _ _ _ _ _ \^_°

f _ _ _ _ _ \^_°

h _ _ _ _ _ \^_°
Weight

Write the equivalent weights.

1. 1000 g = _____________ kg
2. \(\frac{1}{2}\) kg = _____________ g

3. 2 kg = _____________ g
4. \(\frac{1}{4}\) kg = _____________ g

5. 750 g = _____________ kg
6. 400 g = _____________ kg

7. \(\frac{1}{10}\) kg = _____________ g
8. \(3\frac{3}{4}\) kg = _____________ g

9. 2 kg 300 g = _____________ g
10. 5 kg 800 g = _____________ g

11. 8500 g = _____________ kg
12. 12000 g = _____________ kg

13. 1.1 kg = _____________ g
14. 2.5 kg = _____________ g
Estimating weights

Choose eight different objects. Estimate the weight of each object first, then weigh it. Finally, find the difference between the estimate and the weight.

<table>
<thead>
<tr>
<th>Object</th>
<th>Estimated weight</th>
<th>Measured weight</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>kg</td>
<td>g</td>
<td>kg</td>
<td>g</td>
</tr>
</tbody>
</table>

Enter your findings in the table.
Ordering weights

The sacks contain rocks. Write the weight of each sack in kilograms.

1. 1 kg 400 g
2. 1 kg 300 g
3. 2 kg 100 g
4. 5 kg 100 g

5. 3 kg 500 g
6. 6 kg 200 g
7. 750 g
8. 10 kg 100 g

9. Write the weights of the sacks in order from smallest to largest.

Solve these problems

10. Together, a rucksack and sleeping bag weigh 25 kg. If the sleeping bag weighs 10.5 kg, how much does the rucksack weigh?

11. Three babies weigh 4.3 kg, 4.6 kg and 3.9 kg when they are born. Write the weights in order from lightest to heaviest.

12. In one student’s bag, the books weigh 3 kg 200 g, the pencil case weighs 300 g and the lunchbox weighs 2 1/2 kg. Write the total weight in the student’s bag in kilograms.
Write the coordinates of each letter.

A (,)
B (,)
C (,)
D (,)
E (,)
F (,)
G (,)
H (,)
I (,)
J (,)
Write the name of the shape at each position.

1. (4, 4) 2. (6, 6)
3. (2, 3) 4. (7, 2)
5. (8, 5) 6. (5, 8)
7. (3, 1) 8. (2, 6)
9. (5, 2) 10. (1, 7)
Coordinate shapes

Mark the points on each grid.
Join them to make a shape.
Write the name of the shape.

1.
\[(2, 4), (5, 4), (2, 2), (5, 2)\]

2.
\[(1, 5), (6, 5), (1, 1)\]

3.
\[(2, 6), (6, 6), (0, 2), (4, 2)\]

4.
\[(1, 4), (0, 2), (6, 2), (5, 4)\]
Calendars

Fill in the rest of the dates on the calendar pages.

September

<table>
<thead>
<tr>
<th>M</th>
<th>Tu</th>
<th>W</th>
<th>Th</th>
<th>F</th>
<th>Sa</th>
<th>Su</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

October

<table>
<thead>
<tr>
<th>M</th>
<th>Tu</th>
<th>W</th>
<th>Th</th>
<th>F</th>
<th>Sa</th>
<th>Su</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

November

<table>
<thead>
<tr>
<th>M</th>
<th>Tu</th>
<th>W</th>
<th>Th</th>
<th>F</th>
<th>Sa</th>
<th>Su</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

December

<table>
<thead>
<tr>
<th>M</th>
<th>Tu</th>
<th>W</th>
<th>Th</th>
<th>F</th>
<th>Sa</th>
<th>Su</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Calendars

What day of the week is:

1. 4th March? ___________________________ 2. 14th April? ___________________________
3. 15th March? ___________________________ 4. 26th April? ___________________________
5. 5th April? ____________________________ 6. 31st March? ___________________________
7. 23rd April? ___________________________ 8. 13th March? ___________________________

What is the date of:

9. the first Monday in March? ______________
10. the third Friday in March? ______________
11. the second Tuesday in April? ______________
12. the fourth Saturday in March? ______________
13. the last Sunday in April? ______________
Calendar patterns

Choose different 2×2 squares. Draw them and add opposite corner numbers.

How many different answers can you find? What do you notice?

Investigate these shapes on the calendar.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Tu</td>
<td>W</td>
<td>Th</td>
<td>F</td>
<td>Sa</td>
<td>Su</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
</tr>
<tr>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$7 + 15 = 22$
$8 + 14 =
$23 + 31 =
$30 + 24 =$
Write the letters in the correct positions in each Venn diagram.

Venn diagrams

vowel

before j

first half of alphabet

capital
Carroll diagrams

Write the numbers in the correct positions in the Carroll diagrams.

1. multiple of 5
 - 5
 - 15
 - 6
 - 22
 - 10
 - 20
 - 50
 - 13
 - 18
 - 50

 not a multiple of 5
 - 13

 even
 -
 -
 -
 -
 -
 -
 -
 -
 -

 odd
 -
 -
 -
 -
 -
 -
 -
 -
 -

2. digit total less than 10
 - 17
 - 95
 - 28
 - 35
 - 55
 - 14
 - 81
 - 60
 - 42
 - 32
 - 48
 - 74

 digit total not less than 10
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -

 even
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -

 odd
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -

3. multiple of 3
 - 42
 - 17
 - 4
 - 32
 - 3
 - 23
 - 15
 - 7
 - 6
 - 8
 - 14
 - 11
 - 18
 - 21
 - 13
 - 18
 - 28

 not a multiple of 3
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -

 multiple of 2
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -

 not a multiple of 2
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -
 -

Adding

Write an estimate for each addition in the loops.

Complete the additions.

1. £2.73 + £3.48

2. £1.48 + £4.56

3. £5.27 + £2.86

4. £4.35 + £2.79

5. £5.46 + £3.86

6. £2.75 + £1.89

7. £6.71 + £5.98

8. £4.32 + £7.94

9. £8.96 + £5.59

Checking our calculations

Louise has written some calculations for Adam. Check each one using subtraction and give Adam a mark out of 10. Correct the ones that are wrong.

1. £2.58 + £3.87 = £6.45
2. £7.82 + £6.77 = £14.49
3. £1.54 + £8.93 = £10.47
4. £4.68 + £6.73 = £11.31
5. £5.91 + £6.15 = £12.16
6. £6.72 + £8.21 = £14.93
7. £3.39 + £8.14 = £11.53
8. £7.47 + £1.50 = £8.97
9. £8.19 + £4.78 = £13.07
10. £4.37 + £2.89 = £7.26

Each person buys two items and spends all their money. Which two items did each person buy? Use subtraction to work it out.
Subtracting

Write an estimate for each subtraction in the loops.

Complete the subtractions.

1. \[\begin{align*} \text{£4.73} & \quad - \quad \text{£1.28} \\ \hline & \quad \text{£3.45} \end{align*} \]

2. \[\begin{align*} \text{£3.62} & \quad - \quad \text{£2.39} \\ \hline & \quad \text{£1.23} \end{align*} \]

3. \[\begin{align*} \text{£5.84} & \quad - \quad \text{£3.27} \\ \hline & \quad \text{£2.57} \end{align*} \]

4. \[\begin{align*} \text{£7.38} & \quad - \quad \text{£4.52} \\ \hline & \quad \text{£2.86} \end{align*} \]

5. \[\begin{align*} \text{£5.29} & \quad - \quad \text{£3.64} \\ \hline & \quad \text{£1.65} \end{align*} \]

6. \[\begin{align*} \text{£6.17} & \quad - \quad \text{£1.75} \\ \hline & \quad \text{£4.42} \end{align*} \]

7. \[\begin{align*} \text{£5.22} & \quad - \quad \text{£1.47} \\ \hline & \quad \text{£3.75} \end{align*} \]

8. \[\begin{align*} \text{£8.14} & \quad - \quad \text{£5.28} \\ \hline & \quad \text{£2.86} \end{align*} \]

9. \[\begin{align*} \text{£9.23} & \quad - \quad \text{£6.75} \\ \hline & \quad \text{£2.48} \end{align*} \]
Sevens

Complete the multiplications and divisions.

1. $3 \times 7 = \square$
2. $8 \times 7 = \square$
3. $70 \div 7 = \square$
4. $14 \div 7 = \square$
5. $63 \div 7 = \square$
6. $35 \div 7 = \square$
7. $10 \times 7 = \square$
8. $28 \div 7 = \square$
9. $56 \div 7 = \square$
10. $6 \times 7 = \square$
11. $7 \times 7 = \square$
12. $4 \times 7 = \square$
13. $9 \times 7 = \square$
14. $42 \div 7 = \square$
15. $2 \times 7 = \square$
16. $21 \div 7 = \square$
17. $49 \div 7 = \square$
18. $5 \times 7 = \square$
Sevens and nines

A game for two players. You will need a counter each. Place your counters on ‘Start’. Take turns to roll a dice and move your counter a matching number of spaces. If you land on a multiple of 7, jump forwards to the next multiple of 7. If you land on a multiple of 9, jump backwards to the previous multiple of 9. The winner is the first to reach ‘Finish’.
Multiplying

Use 1–9 number cards. Shuffle them and select a card for each missing number. Write the numbers in the boxes, then complete the multiplications.

1. \[
\square \times 40 = _
\]
2. \[
\square \times 30 = _
\]
3. \[
70 \times \square = _
\]
4. \[
50 \times \square = _
\]
5. \[
\square \times 20 = _
\]
6. \[
\square \times 60 = _
\]
7. \[
40 \times \square = _
\]
8. \[
30 \times \square = _
\]
9. \[
\square \times 80 = _
\]
10. \[
\square \times 50 = _
\]
11. \[
20 \times \square = _
\]
12. \[
80 \times \square = _
\]
13. \[
\square \times 70 = _
\]
14. \[
\square \times 90 = _
\]
15. \[
60 \times \square = _
\]
16. \[
90 \times \square = _
\]
Multiplying

Complete the multiplications, using the boxes to help you.

1. $30 \times 2 = 210$
 $7 \times 14 = 98$
 $210 + 98 = 308$

 $32 \times 7 = 224$

2. $43 \times 8 = ______$

3. $64 \times 9 = ______$

4. $28 \times 4 = ______$

5. $26 \times 6 = ______$

6. $35 \times 9 = ______$

7. $59 \times 7 = ______$

8. $87 \times 5 = ______$
Multiplying

Write an estimate for each multiplication in the loops.

Complete the multiplications.

1. \[24 \times 3\]

2. \[38 \times 4\]

3. \[59 \times 7\]

4. \[68 \times 5\]

5. \[53 \times 8\]

6. \[47 \times 6\]

7. \[96 \times 4\]

8. \[63 \times 5\]

9. \[27 \times q\]
Multiplying

Use 2–8 number cards. Shuffle them and select a card for each missing number. Write the numbers in the boxes.

Estimate the answers, then complete the multiplications.

1. \[32 \times \square\]

2. \[27 \times \square\]

3. \[41 \times \square\]

4. \[53 \times \square\]

5. \[39 \times \square\]

6. \[48 \times \square\]

7. \[65 \times \square\]

8. \[76 \times \square\]
Multiplying

Use 1–9 number cards. Deal them to create three multiplications. Estimate the answers, then complete the multiplications.

1.
 [Diagram of multiplication]

2.
 [Diagram of multiplication]

3.
 [Diagram of multiplication]

Create three multiplications that have an answer close to 200.

4.
 [Diagram of multiplication]

5.
 [Diagram of multiplication]

6.
 [Diagram of multiplication]
Dividing

Complete the divisions.

1. \[\frac{42}{3)42} \]
 \[\begin{array}{c}
 \underline{30} \\
 \underline{10 \times 3}
 \end{array} \]
 \[\begin{array}{c}
 \underline{12} \\
 \underline{4 \times 3}
 \end{array} \]
 \[\underline{0} \]

2. \[\frac{38}{2)38} \]

3. \[\frac{72}{4)72} \]

4. \[\frac{85}{5)85} \]

5. \[\frac{96}{6)96} \]

6. \[\frac{48}{3)48} \]

7. \[\frac{91}{7)91} \]

8. \[\frac{56}{4)56} \]

9. \[\frac{84}{6)84} \]
Fractions of money

Write the missing amounts.

1. \(\frac{1}{2} \) of 18p = ______p
2. \(\frac{1}{3} \) of 21p = ______p
3. \(\frac{1}{4} \) of 32p = ______p
4. \(\frac{1}{7} \) of 35p = ______p
5. \(\frac{1}{3} \) of 33p = ______p
6. \(\frac{1}{6} \) of 42p = ______p
7. \(\frac{1}{10} \) of 60p = ______p
8. \(\frac{1}{8} \) of 32p = ______p
9. \(\frac{1}{7} \) of 49p = ______p
10. \(\frac{1}{8} \) of 24p = ______p
11. \(\frac{1}{5} \) of 45p = ______p
12. \(\frac{1}{9} \) of 72p = ______p
13. \(\frac{1}{3} \) of 27p = ______p
14. \(\frac{1}{10} \) of £1.10 = ______p
15. \(\frac{1}{8} \) of 64p = ______p
16. \(\frac{1}{6} \) of 54p = ______p
Fractions of weights

Write the missing amounts.

1. \(\frac{2}{3} \) of 12 kg = _______ kg
2. \(\frac{3}{4} \) of 8 kg = _______ kg
3. \(\frac{2}{5} \) of 20 kg = _______ kg
4. \(\frac{5}{6} \) of 12 kg = _______ kg
5. \(\frac{3}{10} \) of 30 kg = _______ kg
6. \(\frac{3}{8} \) of 16 kg = _______ kg
7. \(\frac{3}{5} \) of 40 kg = _______ kg
8. \(\frac{7}{10} \) of 50 kg = _______ kg
9. \(\frac{3}{4} \) of 20 kg = _______ kg
10. \(\frac{2}{3} \) of 30 kg = _______ kg
11. \(\frac{4}{5} \) of 25 kg = _______ kg
12. \(\frac{5}{8} \) of 24 kg = _______ kg
13. \(\frac{2}{7} \) of 36 kg = _______ kg
14. \(\frac{3}{7} \) of 21 kg = _______ kg
Hundredths

Write each position as a decimal.

5

(A) (B) (C) (D) (E) (F) 6

A 5.18

B

C

D

E

F

7

(G) (H) (I) (J) (K) (L) 8

G

H

I

J

K

L

13

(M) (N) (O) (P) (Q) (R) 14

M

N

O

P

Q

R
Hundredths

Use one ‘q’ number card and two dice in different colours, for example one red and one green. The number card represents the whole number, the red dice represents tenths and the green dice represents hundredths. Roll both dice to make a decimal number. Mark the position of the number on the line and label it.

Do this 10 times.

Write the numbers in order.
Ordering decimals

Mark each pair of decimal numbers on the line. Label the ends of each line.

1. 1.74 and 1.52

2. 6.19 and 6.91

3. 3.03 and 3.53

4. 9.28 and 9.99

5. 5.55 and 5.08

6. 1.68 and 1.29

7. 4.72 and 4.96

8. Write the lengths in order, shortest to longest:
 3.2 m 5.71 m 2.51 m 3.05 m 145 cm 2.5 m